Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Year range
1.
Geoscience Frontiers ; : 101279, 2021.
Article in English | ScienceDirect | ID: covidwho-1347612

ABSTRACT

The novel coronavirus, SARS-CoV-2, has the potential to cause natural ventilation systems in hospital environments to be rendered inadequate, not only for workers but also for people who transit through these environments even for a limited duration. Studies in of the fields of geosciences and engineering, when combined with appropriate technologies, allow for the possibility of reducing the impacts of the SARS-CoV-2 virus in the environment, including those of hospitals which are critical centers for healthcare. In this work, we build parametric 3D models to assess the possible circulation of the SARS-CoV-2 virus in the natural ventilation system of a hospital built to care infected patients during the COVID-19 pandemic. Building Information Modeling (BIM) was performed, generating 3D models of hospital environments utilizing Revit software for Autodesk CFD 2021. The evaluation considered dimensional analyses of 0°, 45°, 90° and 180°. The analysis of natural ventilation patterns on both internal and external surfaces and the distribution of windows in relation to the displacement dynamics of the SARS-CoV-2 virus through the air were considered. The results showed that in the external area of the hospital, the wind speed reached velocities up to 2.1 m/s when entering the building through open windows. In contact with the furniture, this value decreased to 0.78 m/s. In some internal isolation wards that house patients with COVID-19, areas that should be equipped with negative room pressure, air velocity was null. Our study provides insights into the possibility of SARS-CoV-2 contamination in internal hospital environments as well as external areas surrounding hospitals, both of which encounter high pedestrian traffic in cities worldwide.

2.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202005.0376.v1

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is a novel virus of the family Coronaviridae. The virus causes the infectious disease COVID-19. The biology of coronaviruses has been studied for many years. However, bioinformatics tools designed explicitly for SARS-CoV-2 have only recently been developed as a rapid reaction to the need for fast detection, understanding, and treatment of COVID-19. To control the ongoing COVID-19 pandemic, it is of utmost importance to get insight into the evolution and pathogenesis of the virus. In this review, we cover bioinformatics workflows and tools for the routine detection of SARS-CoV-2 infection, the reliable analysis of sequencing data, the tracking of the COVID-19 pandemic and evaluation of containment measures, the study of coronavirus evolution, the discovery of potential drug targets and development of therapeutic strategies. For each tool, we briefly describe its use case and how it advances research specifically for SARS-CoV-2. All tools are freely available online, either through web applications or public code repositories.


Subject(s)
COVID-19 , Communicable Diseases
SELECTION OF CITATIONS
SEARCH DETAIL